ECE 307 - Techniques for Engineering Decisions

11. Basic Probability: Case Studies

George Gross

Department of Electrical and Computer Engineering University of Illinois at Urbana-Champaign

OIL WILDCATTING: SITE DATA

\square We consider two possible exploratory well sites
O site 1: rather uncertain
O site 2: fairly certain for a low production level
Geological fact: if the rock strata underlying site
1 are characterized by a "dome" structure, the chances are better to find oil than if "no dome" structure exists

OIL WILDCATTING: SITE DATA

state	site 1 with $\$ 100 k$ drilling costs	site 2 with \$ 200k drilling costs	
	payoffs (k\$)	probability	payoffs (k\$)
dry	-100	0.2	-200
low production	150	0.8	50
high production	500	0	-

MODELING OF SITE 1 UNCERTAINTY

$\underset{\sim}{S}=$ structure r.v. $= \begin{cases}\text { dome structure } & \text { with prob } 0.6 \\ \text { other } & \text { with prob } 0.4\end{cases}$ conditioning on the event $\{\underset{\sim}{S}=$ dome $\}$
state $\underset{\sim}{X}$ outcome $P\{$ state $\underset{\sim}{X}=x \mid \underset{\sim}{S}=$ dome $\}$
dry
low production 0.25
high production 0.15
© 2006-2018 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

SITE 1: NO DOME OUTCOMES

conditioning on the event $\{\underset{\sim}{S}=$ no dome $\}$

state outcome x	$P\{$ state $\underset{\sim}{X}=x \mid S=$ no dome $\}$
dry	0.850
low production	0.125
high production	0.025

© 2006-2018 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

DECISION TREE CONSTRUCTION

© 2006 - 2018 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

COMPUTATION OF PROBABILITIES OF STATES FOR SITE 1

$$
\begin{aligned}
P\{d r y\}= & P\{\text { state of site } 1=d r y\} \\
= & P\{\text { state }=d r y \mid \underset{\sim}{S}=\text { dome }\} \cdot P\{\underset{\sim}{S}=d o m e\}+ \\
& P\{\text { state }=d r y \mid \underset{\sim}{S}=\text { no dome }\} \cdot P\{\underset{\sim}{S}=\text { no dome }\} \\
= & (0.6)(0.6)+(0.85)(0.4) \\
= & 0.7
\end{aligned}
$$

COMPUTATION OF PROBABILITIES OF STATES FOR SITE 1

$P\{$ low prod. $\}=P\{$ state of site $1=$ low prod. $\}$
$=P\{$ state $=$ low prod. $\mid S=$ dome $\} \cdot P\{S=$ dome $\}+$
$P\{$ state $=$ low prod. $\mid S=$ no dome $\} \cdot P\{S=$ no dome $\}$
$=(0.25)(0.6)+(0.125)(0.4)$
$=0.2$
© 2006 - 2018 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

CONFIGURATION OF PROBABILITIES OF STATES FOR SITE 1

$P\{$ high prod. $\}=P\{$ state $\underset{\sim}{X}$ of site $1=$ high prod. $\}$

$$
=P\{\text { state } \underset{\sim}{X}=\text { high prod. } \mid \underset{\sim}{S}=\text { dome }\} \cdot P\{\underset{\sim}{S}=\text { dome }\}+
$$

$$
P\{\text { state } \underset{\sim}{X}=\text { high prod. } \mid \underset{\sim}{S}=\text { no dome }\} \cdot P\{\underset{\sim}{S}=\text { no dome }\}
$$

$$
=(0.15)(0.6)+(0.025)(0.4)
$$

$$
=0.1
$$

DECISION DIAGRAM COMPLETION

© 2006 - 2018 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

EVALUATION OF PAYOFFS

\square Site 1 evaluation:

$$
\begin{aligned}
\underbrace{E\{\text { payoffs }\}}_{E M V} & =\sum(\text { payoffs in state } \underset{\sim}{X}=x) P\{\text { state } \underset{\sim}{X}=x\} \\
& =-100 \cdot(0.7)+150 \cdot(0.2)+500 \cdot(0.1) \\
& =10 k \$
\end{aligned}
$$

\square Site 2 evaluation:

$$
\begin{aligned}
E\{\text { payoffs }\} & =-200 \cdot(0.2)+50 \cdot(0.8) \\
& =0 k \$
\end{aligned}
$$

VARIANCE EVALUATION

\square Site 1 evaluation:

$$
\begin{aligned}
\sigma_{1}^{2} & =0.7[-100-10]^{2}+0.2[150-10]^{2}+0.1[500-10]^{2} \\
& =36,400(k \$)^{2} \\
& \text { and so }
\end{aligned}
$$

$$
\sigma_{1}=190.8 \mathrm{k} \$
$$

\square Site 2 evaluation:

$$
\begin{aligned}
\sigma_{2}^{2} & =0.2[-200-0]^{2}+0.8[50-0]^{2} \\
& =10,000(k \$)^{2}
\end{aligned}
$$

VARIANCE EVALUATION

and so

$$
\sigma_{2}=100 \mathrm{k} \$
$$

\square Therefore site 1 has greater variability and

therefore greater perceived risk than site 2 since

$$
\sigma_{1} \approx 2 \sigma_{2}>\sigma_{2}
$$

PROBABILITY EVALUATION

state outcome	$P\left\{\begin{array}{c}\|c\| \\ x\end{array}\right.$	$P\{t a t e=x\}$	$\underset{\sim}{X}=x \mid \underset{\sim}{S}=s\}$		$P\{\underset{\sim}{S}=s\}$
dry		0.36	0.34		
low prod.	0.2	0.15	0.05		
high prod.	0.1	0.09	0.01		
$P\{\underset{\sim}{S}=s\}$		0.60	0.40		

JOINT PROBABILITIES

$$
\begin{aligned}
& P\{\text { state }=\text { low prod and } \underset{\sim}{S}=\text { dome }\} \\
= & \underbrace{P\{\text { state }=\text { low } \operatorname{prod} \mid \underset{\sim}{S}=\text { dome }\}}_{0.25} \cdot \underbrace{P\{\underset{\sim}{S}=\text { dome }\}}_{0.6} \\
= & 0.15
\end{aligned}
$$

DECISION DIAGRAM WITH PROBABILITIES

© 2006 - 2018 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

REVERSE PROBABILITIES

$$
P\{\text { state }=d r y \mid \underset{\sim}{S}=\text { no dome }\} \cdot P\{\underset{\sim}{S}=\text { no dome }\}
$$

$$
\begin{aligned}
& P\{\underset{\sim}{S}=d o m e \mid \text { state }=d r y\} \\
& =\frac{P\{\underset{\sim}{S}=\text { dome and state }=d r y\}}{P\{\text { state }=d r y\}} \\
& =\frac{P\{\text { state }=d r y \mid \underset{\sim}{S}=d o m e\} \cdot P\{\underset{\sim}{S}=\text { dome }\}}{P\{\text { state }=d r y\}} \\
& P\{\text { state }=d r y\}=P\{\text { state }=d r y \mid \underset{\sim}{S}=d o m e\} \quad P\{\underset{\sim}{S}=d o m e\}+
\end{aligned}
$$

REVERSE PROBABILITIES

$$
\begin{aligned}
P\{\underset{\sim}{S}=\text { dome } \mid \text { state }=d r y\} & =\frac{(0.6)(0.6)}{(0.6)(0.6)+(0.85)(0.4)} \\
& =\frac{0.36}{0.36+(0.85)(0.4)} \\
& =\frac{0.36}{0.70} \\
& =0.51
\end{aligned}
$$

$$
\begin{aligned}
P\{\underset{\sim}{S}=\text { no dome } \mid \text { state }=d r y\} & =1-P\{\underset{\sim}{S}=\text { dome } \mid \text { state }=d r y\} \\
& =1-0.51 \\
& =0.49
\end{aligned}
$$

DECISION ANALYSIS MONTHLY PROBLEM: MAY DATA

May subscription data	expiring subscriptions (\%)	renewal ratio (\%)
gift subscriptions	70	75
promotional subscriptions	20	50
previous subscribers	10	10
total	100	

DECISION ANALYSIS MONTHLY PROBLEM: JUNE DATA

June subscription data	expiring subscriptions (\%)	renewal ratio (\%)
gift subscriptions	45	85
promotional subscriptions	10	60
previous subscribers	45	20
total	100	

DECISION ANALYSIS MONTHLY PROBLEM: SUBSCRIPTIONS DATA

\square The concern is that overall proportion of
renewals had dropped from May to June
\square Yet, the table figures indicate that the proportion
of renewals had increased in each category
\square We need to analyze the data in a meaningful
fashion and correctly interpret it

DECISION ANALYSIS MONTHLY PROBLEM

We can view the data in the two tables as providing probabilities for the renewal r.v.

$$
\underset{\sim}{R}=\left\{\begin{array}{l}
\text { renewal } \\
\text { no renewal }
\end{array}\right.
$$

\square However, the information is given as conditional probabilities with the conditioning on the subscription type with r.v. $\underset{\sim}{S}$

$$
\underset{\sim}{S}=\left\{\begin{array}{l}
\text { gift } \\
\text { promotional } \\
\text { previous }
\end{array}\right.
$$

DECISION ANALYSIS MONTHLY PROBLEM

\square We use the May and June data and compute:

$$
\begin{gathered}
P\{\underset{\sim}{R}=\text { renewal }\}=P\{\underset{\sim}{R}=\text { renewal } \mid \underset{\sim}{S}=\text { gift }\} \cdot P\{\underset{\sim}{S}=\text { gift }\}+ \\
P \\
P\{\underset{\sim}{R}=\text { renewal } \mid \underset{\sim}{S}=\text { promo }\} \cdot P\{\underset{\sim}{S}=\text { promo }\}+ \\
P\{\underset{\sim}{R}=\text { renewal } \mid \underset{\sim}{S}=\text { previous }\} \cdot P\{\underset{\sim}{S}=\text { previous }\}
\end{gathered}
$$

\square The renewal probabilities are computed for each

month

DECISION ANALYSIS MONTHLY PROBLEM

$$
\begin{aligned}
P\left\{{\underset{\sim}{\text { May }}}^{\boldsymbol{R}} \text { renewal }\right\} & =(0.75)(0.7)+(0.5)(0.2)+(0.1)(0.1) \\
& =0.635 \\
P\left\{{\underset{\sim}{\text { June }}}^{\boldsymbol{R}_{\text {I }}}=\text { renewal }\right\} & =(0.85)(0.45)+(0.6)(0.1)+(0.2)(0.45) \\
& =0.5325
\end{aligned}
$$

\square Due to the change of the mix,

$$
P\left\{{\underset{\sim}{R}}_{\text {June }}=\text { renewal }\right\}<P\left\{{\underset{\sim}{R}}_{\text {May }}=\text { renewal }\right\}
$$

even though the renewal proportion increased in each category

DISCRIMINATION CASE STUDY

\square We explore the relationship between the race of
convicted defendants in murder trials and the
imposition of the death penalty in these trials on
the defendants
\square This is a good example to illustrate the care required to correctly interpret the data

DISCRIMINATION CASE STUDY: DATA

defendants	death penalty imposed		total defendants		
	yes	no			
white	19	141	166		
	17	149	326		
	total		36	290	

DISCRIMINATION CASE STUDY: USING THE DATA

\square We define the r.v.s
$\begin{cases}1 & \text { death penalty is imposed }\end{cases}$
0 otherwise

$$
\underset{\sim}{R}=\text { race }= \begin{cases}\text { white } & \text { defendant is white } \\ \text { black } & \text { defendant is black }\end{cases}
$$

\square We use data of the table to determine

$$
P\{\underset{\sim}{D}=1 \mid \underset{\sim}{R}=\text { white }\} \text { and } P\{\underset{\sim}{D}=1 \mid \underset{\sim}{R}=\text { black }\}
$$

© 2006 - 2018 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

DISCRIMINATION CASE STUDY: USING THE DATA

- The table provides values

$$
\begin{aligned}
& P\{\underset{\sim}{D}=1 \mid \underset{\sim}{R}=\text { white }\}=\frac{19}{160}=0.119 \\
& P\{\underset{\sim}{D}=1 \mid \underset{\sim}{R}=\text { black }\}=\frac{17}{166}=0.102
\end{aligned}
$$

\square These two probabilities indicate little difference between the treatment of the two races

We use additional data to probe a little deeper

DISCRIMINATION CASE STUDY: USING MORE DATA

race of victim	race of defendant	death penalty imposed		total defendants
		19	132	
	black	11	52	63
	total	30	184	214
black	white	0	9	9
	black	6	97	103
	total	6	106	112
total for all cases		36	290	326

DISCRIMINATION CASE STUDY: USING MORE DATA

Next, we bring in the race of the victim by defining
the r.v.

$$
\underset{\sim}{V}= \begin{cases}\text { white } & \text { victim is white } \\ \text { black } & \text { victim is black }\end{cases}
$$

\square We have the following probabilities

$$
\begin{aligned}
& P\{\underset{\sim}{D}=1 \mid \underset{\sim}{R}=\text { white }, \underset{\sim}{V}=\text { white }\}=\frac{19}{151}=0.126 \\
& P\{\underset{\sim}{D}=1 \mid \underset{\sim}{R}=\text { black, }, \underset{\sim}{V}=\text { white }\}=\frac{11}{63}=0.175
\end{aligned}
$$

DISCRIMINATION CASE STUDY: USING MORE DATA

$$
\begin{aligned}
& P\{\underset{\sim}{D}=1 \mid \underset{\sim}{R}=\text { white, }, \underset{\sim}{V}=\text { black }\}=\frac{0}{9}=0 \\
& P\{\underset{\sim}{D}=1 \mid \underset{\sim}{R}=\text { black, } \underset{\sim}{V}=\text { black }\}=\frac{6}{103}=0.058
\end{aligned}
$$

\square Data disaggregation on the basis of conditioning also on the r.v. $\underset{\sim}{V}$ shows that blacks appear to get the death penalty more frequently, about 5\% more, than whites independent of the race of the victim

APPARENT PARADOX

\square No difference between the overall imposition of

 death penalty and the race of the convicted murderers in the aggregated data case\square Clear difference in the disaggregated data case where the race of the victim is explicitly considered: blacks appear to get the penalty with 5% higher incidence than whites
\square The classification of the victim's race allows the distinct differentiation of the $\underset{\sim}{R}=$ white from the $\underset{\sim}{R}=$ black cases

KEY ISSUE

\square Since the number of black victims for $\underset{\sim}{\boldsymbol{R}}=$ white

 cases is 0 , the result is a 0 rate of death penalty, making no contribution to the overall rate for the $\underset{\sim}{\boldsymbol{R}}=$ white cases\square In addition, the many black victims for the
$\underset{\sim}{\boldsymbol{R}}=$ black cases results in the relatively low death penalty rate for black defendant / black victim
cases and brings down the overall death penalty rate for black victims
© 2006 - 2018 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

